LINEAR INDUCTION MOTOR

Electrical and Computer Engineering

Tyler Berchtold, Mason Biernat and Tim Zastawny
Project Advisor: Professor Steven Gutschlag
11/19/2015

Outline of Presentation

- Project Overview
- Tyler
- Mason
- Tim
- Conclusion

Outline of Presentation

- Project Overview
- Tyler
- Mason
- Tim
- Conclusion

Project Overview

Linear Induction Motor Background

- Alternating Current electric motor
- Powered by a multiple phase voltage scheme
- Force and motion are produced by a linearly moving magnetic field
- Used to turn large diameter wheels

Alternating Current Induction Machines

- Most common AC machine in industry
- Produces magnetic fields in an infinite loop of rotary motion
- Stator wrapped around rotor

Rotary to Linear

[3]

Subsystem Block Diagram

Personal Motivation

To graduate!

Gantt Chart Current Project

TASK NAME	COMPLETION	Sep-15					Oct-15				Nov-15				Dec-15				
	PRECENT	1	8	15	22	29	6	13	20	27	3	10	17	24	1	8	15	22	29
General System Design	100%																		
Stator Design	95%																		
Purchasing	25%																		
Construction	0%																		

Outline of Presentation

- Project Overview
- Tyler
- Mason
- Tim
- Conclusion

Tyler

Progress

- Research
 - Rotary to linear conversion models
 - Pole arrangements
- Overall Microcontroller System
 - Tachometer
 - Variable Frequency Drive (VFD)
 - Liquid Crystal Display (LCD)

Tachometer Subsystem

- Main Components
 - Photo-interruptor
 - Transparent Disk with Notches
- External Interrupt
 - Counts pulses
 - 4 pulses per rotation
 - 250 ms interrupt service routine

VFD Subsystem

- Main Components
 - VFD
 - 0-10V signal correlates to 0-120 Hz
 - A/D Converter
 - D/A Converter
- A/D Converter
 - Onboard the ATmega128
 - 250 ms interrupt service routine
 - Compares input voltages

LCD Subsystem

- LCD Displayed Values
 - RPM
 - Calculation to obtain RPM
 - Convert to string
 - Input string to LCD
 - Output frequency
 - Calculation to obtain VFD output frequency
 - Convert to string
 - Input string to LCD

Gantt Chart

TASK NAME	COMPLETION	Sep-15					Oct-15				Nov-15				Dec-15				
	PERCENT	1	8	15	22	29	6	13	20	27	3	10	17	24	1	8	15	22	29
Microcontroller System	70%																		
Keypad	0%																		
LCD Interface	100%																		
Tachometer	100%																		
Variable Frequency Drive	50%																		
A/D	100%																		
D/A	0%																·		

Upcoming Work

- Implementation of Stator
 - Full group effort
- Microcontroller System
 - Keypad
 - Display input keypad value on LCD
 - Input displayed keypad value to D/A converter
 - D/A Converter
 - Input 0-10 V reference signal to VFD
 - Will change output frequency of VFD

Outline of Presentation

- Project Overview
- Tyler
- Mason
- Tim
- Conclusion

Mason

Progress

- Research
 - Pole Arrangements
 - Rotary to Linear Speed
 - Variable Frequency Drive
 - Turns per Phase
- Calculations
 - Rotary to Linear Speed
 - Ideal Linear Synchronous Speed and Frequency
 - Coil Windings and Turns per Phase
 - Coil Inductance

$$P_{out} = 6.6pn_{ms}B_{ag}A_pT_{ph}k_wI_{ph}\eta(PF) \tag{1}$$

```
P_{out} = Output \ Power
p = Number \ of \ Poles
n_{ms} = Mechanical \ Cycles \ per \ Second
B_{ag} = Average \ Air - Gap \ Flux \ Density \ per \ Pole = 1.1 \ [T]
A_p = Cross - Sectional \ Area \ of \ Pole \ Faces = 0.0346 \ [m]
T_{ph} = Number \ of \ Turns \ per \ Phase
k_w = Coil \ Winding \ Factor = 0.86
I_{ph} = Input \ Phase \ Current = 3 \ [A]
\eta = Efficiency = 0.6
PF = Power \ Factor = 0.7
```

$$L = \frac{31.6\mu_r N^2 r_1^2}{6r_1 + 9l + 10(r_1 - r_2)}$$
 (2)

```
L = Inductance of Multiple Winding Coil [\mu H]
```

 $\mu_r = Permeability of Material [Hm^{-1}]$

N = Number of Turns

 $r_1 = Inner \, Diameter \, of \, Coil \, [m]$

 $l = Length \ of \ Stator \ Teeth \ [m]$

 $r_2 = Outer Diameter of Coil [m]$

4-Pole Machine Using 16 AWG:

- 45 Wraps fit on a 0.0762 m
 Tooth
- 851 Turns per Phase
- 213 Wraps per Stator Tooth
- 5 Coil Wrapping Layers per Stator Tooth
- Outer Diameter of 0.0362 m
- Coil Inductance of 1.5867 μH

2-Pole Machine Using 16 AWG:

- 45 Wraps fit on a 0.0762 m
 Tooth
- 1703 Turns per Phase
- 852 Wraps per Stator Tooth
- 19 Coil Wrapping Layers per Stator Tooth
- Outer Diameter of 0.0601 m
- Coil Inductance of 15.4940 μH

$$\omega = \frac{120f}{p} \tag{3}$$

 $\omega = Rotational Speed of Rotor [rpm]$

p = Number of Poles

f = Input Frequency [Hz]

$$v = r\omega\left(\frac{2\pi}{60}\right) \tag{4}$$

 $v = Linear Velocity \left[\frac{m}{s}\right]$

r = Radius of Rotor [m]

$$U_S = 2\tau f \tag{5}$$

 $U_s = Linear Synchronous Speed \left[\frac{m}{s}\right]$

 $\tau = Pole\ Pitch\ [m]$

Gantt Chart

TASK NAME	COMPLETION	Sep-15					Oct-15				Nov-15				Dec-15				
	PERCENT	1	8	15	22	29	6	13	20	27	3	10	17	24	1	8	15	22	29
Stator Design	90%																		
Turns Per Phase	100%																		
Coil Pitch	85%																		
Pole Arrangment	100%																		
Pole Pitch	100%																		

Outline of Presentation

- Project Overview
- Tyler
- Mason
- Tim
- Conclusion

Tim

Progress

- Pole Arrangement
 - Salient
 - Non Salient
- Design Stator
- Manufacturing
 - Cost
 - Time

Pole Arrangements

- Understanding poles effect on the system
 - Number
 - Will vary overall speed
 - Will vary output force
 - Salient
 - Single coil per tooth
 - Non-salient or Distributed
 - Coils distributed around multiple teeth

Salient and Non-Salient

Design of Stator

Design of Stator

- Material of LIM
 - Laminated Steel
- Length of teeth
 - Allow for coil windings to fit

Design of Stator

- Slot and Teeth Ratio
- Narrow Teeth
 - Generates more force
 - Better Efficiency
 - Better Power Factor
- Tooth Saturation

Manufacturing

- Laser Laminations
- 1 Week Constructing
- Shipping
- First Lamination most expensive part of manufacturing
- Original 2 Pole Machine cost estimate \$250
- New 4 Pole Machine cost raised to \$450

Gantt Chart

TASK NAME	COMPLETION	Sep-15						Oct	:-15			Nov	/-15		Dec-15					
	PERCENT	1	8	15	22	29	6	13	20	27	3	10	17	24	1	8	15	22	29	
Pole Arrangments	100%																			
Teeth/Slot	90%																			
CAD Design	85%																			
Manufacturing	25%																			

Upcoming Work

- Purchasing Stator
- Winding the coils

Outline of Presentation

- Project Overview
- Tyler
- Mason
- Tim
- Conclusion

Conclusion

Conclusion

- Work Done
 - Pole Arrangement
 - Coil Windings
 - Teeth/ Slot
 - Design
- Future Work
 - Purchasing
 - Construction
 - Implementation
 - Testing

Questions

References

Pole Pitch

$$U_s = 2\tau f$$

Pole Pitch = 0.1668m

http://www.davidsonsales.com/docs_pdf/Coil Pitch.pdf

Master Gantt Chart

TASK NAME	RESPONSIBLE	Date	Π	Sep-15		Oct-15		Nov-15			Т	Dec-15			Т	Jan-16			Т	Feb-16				Ма	ar-16			Apr-1	6
			1	8 15	22 29	9 (5 13 20 27	3	10	17 2	24	1 8	15	22 2	29	5	12 1	9 26	2	9	16	23	1	8 1	15 2	2 29	5	12 1	9 26
General System Design	All	September 4, 2015		10	0%	Ţ		$ldsymbol{\square}$		_	\Box				1				T			Ц							
Stator Design		November 17, 2015									┪	90%			T				T			┪							
Research Winding Types	Tim	September 22, 2015				1	100%				- 1				1				ı										
Pole and Slot Pitch	Mason	September 22, 2015	l			:	100%	l			-				1				ı										
Pole Depth	All	November 17, 2015	l						П		-	90%			1				ı										
Slot/Teeth Ratio	All	October 27, 2015	l			П					-				1				ı										
Number of Coil Windings	All	November 17, 2015										90%																	
Purchasing	All	November 30, 2015				İ						2	25%		I				İ			コ							
Construction		February 2, 2016	Т			T		Т		\top	┪								T		09	6					Г		
Coil Windings	Mason and Tim	January 25, 2016	l			ı		ı			1									0%									
Stator Mount	Mason and Tim	February 8, 2016	l			ı		ı													09	6							
Microcontroller Sytem	Tyler	February 8, 2016	l			ı		ı											Н		09	6							
VFD Programming	Tyler	February 8, 2016	l			ı		ı							Т				Н		09	6							
Sensor Programming	Tyler	January 25, 2016				L													L	0%									
Implementation	All	February 9, 2016				İ				#	⇉				I				工		09	6							
Testing	All	March 7, 2016				İ				#	⇉				I				工							0%			

References

- [1] A. Needham. A maglev train coming out of the Pudong International Airport. [Photograph]. Retrieved from https://en.wikipedia.org/wiki/Maglev#/media/File:A_maglev_train_coming_out,_Pudong_International_Airport,_Shanghai.jpg
- [2] Linear Induction Motor. [Photograph]. Retrieved from http://www.mpoweruk.com/motorsac.htm
- [3] Force Engineering. *How Linear Induction Motors Work.* [Photograph]. Retrieved from http://www.force.co.uk/linear-motors/how-linear.php